Virtual NEURON: A Unifying Computational Framework to Study Calcium Signaling and Membrane Electrophysiology in Physiological Cerebellar Purkinje Neurons & in IP3R1-associated Ataxias

Sherry-Ann Nickaye Brown

B.A., Wesleyan University, 2003
M.A., Wesleyan University, 2004

A Dissertation
Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
at the University of Connecticut
2012

(Dissertation Completed: June 2010)
This thesis is dedicated to all creatures aspiring to fulfill their destiny and live their purpose. To my mom and dad who effortlessly and selflessly give themselves for me. To my family and friends whose support over the years have held me up and been shoulders for me to stand on. To my colleagues and future patients, thank you for sharing your thoughts with me, and allowing me to share in your search for hope and healing.
Acknowledgements

I would like to acknowledge Dr. Leslie M. Loew: my advisor and mentor, my primary investigator, my support through this academic process. I would also like to acknowledge Dr. Barbara Kream and the MD/PhD program at UCHC; Raquell Holmes, Drs. Jim Watras, Jim Schaff, Ion Moraru, Ann Cowan, Boris Slepchenko, Pavel Kraikovsky, Igor Novak, Corey Acker, Stacy Wilson, Jon Ditlev, as well as Sofya Borinskaya, Erika Hoyos, and others at the R.D. Berlin Center for Cell Analysis & Modeling. I must thank Dr. Art Hand at UCHC and Dr. Bill Lytton in SUNY Downstate in New York, and also Drs. Charles Wolgemuth, Laurinda Jaffe, and Eric Levine. I am thankful for my classmates in the UCONN Schools of Medicine and Dental Medicine, and for all with whom I have volunteered on any occasion. Finally, I would like to thank Dr. Marja Hurley for encouraging me to seek out ataxic mouse models in response to my desire for experimental examples to pursue as correlates of clinical applications of cerebellar physiology.
# Table of Contents

## Feature | Page
--- | ---
Title Page | i
Dedication | iv
Acknowledgements | v
List of Figures | vii
List of Tables | viii

## Chapter | Title | Page
--- | --- | ---
Chapter 1 | Introduction | 1
Chapter 2 | Analysis of PIP2 Dynamics in Purkinje Spines | 43
Chapter 3 | Virtual NEURON: Merging Biochemistry and Electrophysiology | 114
Chapter 4 | Computational Analysis of Spinocerebellar Ataxias | 170
Chapter 5 | Proposed Experiment | 278
Chapter 6 | Poetic Science | 296
Chapter 7 | Conclusion | 331
Appendix | 343
References | 350
List of Tables

Chapter 2  *  Analysis of PIP2 Dynamics in Purkinje Spines             Page 43
  Table 1  Parameter and initial condition values used in 3D simulations            Page 73
  Table 2  Additional parameter and initial condition values for 1D simulations          Page 74

Chapter 3  *  Virtual NEURON: Merging Biochemistry and Electrophysiology            Page 114
  Table S1  Attenuation comparison of the PPR model with the full model             Page 156
  Table S2  Representative computer run times for the PPR and full models          Page 156

Chapter 4  *  Computational Analysis of Spinocerebellar Ataxias  Page 170
  Table 1  Parameters for new features added to model                               Page 222
  Table 2  Ataxic mouse models relevant to this study                               Page 223
  Table 3  ICpeptides developed and published by Tang et al                       Page 223
  Table 4  Suggested use of Icpeptides relevant to this study                      Page 224
  Table 5  Experimentally Observed Pathology in SCA1-3                             Page 224
  Table 6  Molecules considered for compensation gain or loss                     Page 225
  Table 7  Parameters used in cylinder simulations                                 Page 225

Chapter 5  *  Proposed Experiment Page 278
  Table 1  Treatment guide for Proposed Experiment                                  Page 284
## List of Figures

### Chapter 1 * Introduction Page no.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Portion of IP3R1 relevant to this study</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Membrane and cytoplasmic events involved in calcium release</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3</td>
<td>IP3R1-associated ataxias converge on phosphoinositol signaling pathway</td>
<td>42</td>
</tr>
</tbody>
</table>

### Chapter 2 * Analysis of PIP2 Dynamics in Purkinje Spines Page 114

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Membrane and cytoplasmic events involved in calcium release</td>
<td>84</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Relationships between 3D, 1D and 0D geometrical models</td>
<td>85</td>
</tr>
<tr>
<td>Figure 3</td>
<td>3D purkinje dendrite geometries and boundary conditions</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4</td>
<td>IP3 concentration in constructed 3D geometry for central spine</td>
<td>90</td>
</tr>
<tr>
<td>Figure 5</td>
<td>IP3 concentration for central spine and PIP2 diffusion for various spines</td>
<td>91</td>
</tr>
<tr>
<td>Figure 6</td>
<td>VCell Schematic, IP3 and PIP2 concentrations with stimulated synthesis</td>
<td>94</td>
</tr>
<tr>
<td>Figure 7</td>
<td>VCell Schematic, IP3 and PIP2 concentrations with local sequestration</td>
<td>100</td>
</tr>
<tr>
<td>Figure 8</td>
<td>IP3 concentration and Ca transients for coincident activation of the spine</td>
<td>102</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Comparing simulations to experimental data for coincidence detection</td>
<td>106</td>
</tr>
<tr>
<td>Figure S1</td>
<td>PIP2 concentration at different locations</td>
<td>112</td>
</tr>
<tr>
<td>Figure S2</td>
<td>Optimizing the compartmental model for appropriate IP3 signals</td>
<td>113</td>
</tr>
</tbody>
</table>

### Chapter 3 * Virtual NEURON: Merging Biochemistry and Electrophysiology Page 170

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Representation of the complex Purkinje neuron</td>
<td>141</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Reduction of complex Purkinje neuronal morphology in NEURON</td>
<td>142</td>
</tr>
</tbody>
</table>
Figure S3  Supersensitive IP3R1 also alters the precise timing of action potentials  Page 259
Figure S4  sER cylinders do not spatially localize calcium concentration  Page 263
Figure S5  Supralinear calcium release in a 3D spine  Page 265
Figure S6  Augmenting IP3R1 sensitivity to activation by IP3  Page 267
Figure S7  Altered precise timing of action potential oscillations (stimulated synthesis)  Page 268
Figure S8  Altered precise timing of spine voltage changes (stimulated synthesis)  Page 269
Figure S9  Altered precise timing of calcium oscillations (stimulated synthesis)  Page 270
Figure S10  ICpeptides in our models of SCA15/16, SCA1/2/3 (stimulated synthesis)  Page 271
Figure S11  Downregulation of IP3R1, SERCA, mGluR, Homer (stimulated synthesis)  Page 272